Kicking the
Hornet’s Nest

The Complete Writings, Emails,
and Forum Posts of Satoshi
Nakamoto, the Founder of Bitcoin
and Cryptocurrency

Third Edition

Mill Hill Books

Kicking the Hornet’s Nest: The Complete Writings, Emails, and Forum Posts of
Satoshi Nakamoto, the Founder of Bitcoin and Cryptocurrency

Copyright © 2019 Mill Hill Books. All rights reserved.
Third edition copyright © 2024 Mill Hill Books. All rights reserved.
Published by Mill Hill Books
ISBN 978-0-359-32744-7

N 978-0-359-

B i

It would have been nice to get this attention in any other
context. WikiLeaks has kicked the hornet's nest, and the
swarm is headed towards us.

- Satoshi Nakamoto, December 11, 2010, 23:39:16 UTC

This statement was in reference to an article by PC World. It can
be accessed at
https://www.pcworld.com/article/213230/could wikileaks scandal lead

to _new virtual currency.html.

Two days later, Satoshi Nakamoto disappeared from making
further public postings.

https://www.pcworld.com/article/213230/could_wikileaks_scandal_lead_to_new_virtual_currency.html
https://www.pcworld.com/article/213230/could_wikileaks_scandal_lead_to_new_virtual_currency.html

Sources:

https://satoshi.nakamotoinstitute.org - This was the main resource for
this book. Their work and organization is priceless.
https://BitcoinTalk.org/ - The forum set up by Satoshi.
http://www.metzdowd.com/pipermail/cryptography - The Cryptography
Mailing List was used by the group generally known as “cypherpunks.”
https://plan99.net/~mike - Personal emails to/from Mike Hearn, publicly
shared on the Internet at this site.

https://en.bitcoin.it/wiki/Source: Trammell/Nakamoto emadils - Personal
emails to/from Dustin Trammell (aka Druid) from January 2009. Also,
emails from Trammell’s website:

https://www.dustintrammell.com/s/Satoshi_Nakamoto.zip
https://online.wsj.com/public/resources/documents/

finneynakamotoemails.pdf - Personal emails to/from Hal Finney,
publicly shared on this Wall Street Journal site.
https://www.coindesk.com/satoshi-nakamoto-hal-finney-emails - “Newly
discovered emails” revealed in November, 2020, in a CoinDesk article
written by Michael Kapilkov.
https://bitcoinmagazine.com/technical/bitcoin-adam-backs-complete-
emails-satoshi-nakamoto which references the COPA case file dump at
https://www.dropbox.com/scl/fo/4y3gdele4foy15006z8ch/h?
rikey=scs42wew1o3vwfvOnduhc43dm&e=1&dl=0 — Personal emails

to/from Adam Back previously unseen publicly prior to the February
2024 COPA case.

https://mmalmi.github.io/satoshi/ - Personal emails to/from Martii
Malmi. These were released publicly by Malmi in February 2024 as part
of the COPA case.

https://mmalmi.github.io/satoshi/
https://www.dropbox.com/scl/fo/4y3gdele4foy15006z8ch/h?rlkey=scs42wew1o3vwfv0nduhc43dm&e=1&dl=0
https://www.dropbox.com/scl/fo/4y3gdele4foy15006z8ch/h?rlkey=scs42wew1o3vwfv0nduhc43dm&e=1&dl=0
https://bitcoinmagazine.com/technical/bitcoin-adam-backs-complete-emails-satoshi-nakamoto
https://bitcoinmagazine.com/technical/bitcoin-adam-backs-complete-emails-satoshi-nakamoto
https://www.coindesk.com/satoshi-nakamoto-hal-finney-emails
https://online.wsj.com/public/resources/documents/finneynakamotoemails.pdf
https://online.wsj.com/public/resources/documents/finneynakamotoemails.pdf
https://www.dustintrammell.com/s/Satoshi_Nakamoto.zip
https://en.bitcoin.it/wiki/Source:Trammell/Nakamoto_emails
https://plan99.net/~mike
http://www.metzdowd.com/pipermail/cryptography
https://bitcointalk.org/
https://satoshi.nakamotoinstitute.org/

Notes on the Third Edition

One might ask, “Why is there a third edition of Satoshi’s words?” The
simple answer is that new, or rather, previously unseen Satoshi writings have
emerged publicly.

The “Hal Finney emails” cited above by CoinDesk in November of 2020
prompted version two of “Kicking.”

Then, in February of 2024, the “COPA trial” began with the possible
identity of Satoshi Nakamoto at the core of the case. That trial called in
individuals who had made early electronic contact with Satoshi to offer witness
statements. As a result, new, previously private “Satoshi emails” became public.
Hence, here is the Third Edition of “Kicking.”

I think that a chronological record of Satoshi’s writings is interesting,
useful, and important. To that end, I’'m committed to keeping this book freely
offered and in several formats. See all the links at

https://hive.blog/@crrdlx/satoshi to download a copy.

- crrdlx, editor
February 24, 2024
https://hive.blog/@crrdlx/satoshi

This book is available in print at https:/lulu.com

Digital versions (pdf, txt) can be obtained for free at
https://hive.blog/@crrdlx/satoshi Visit this site for all links, digital and print.

https://hive.blog/@crrdlx/satoshi
https://lulu.com/
https://hive.blog/@crrdlx/satoshi
https://hive.blog/@crrdlx/satoshi

Notes from the Editor (written for the First Edition)

Ten years ago, on January 3, 2009, Bitcoin went live. That day, Satoshi
Nakamoto generated the first Bitcoin block, which has since come to be known as
the “Genesis block.” In the Genesis block, Satoshi encoded the message, “The
Times 03/Jan/2009 Chancellor on brink of second bailout for banks.” This was
likely to both timestamp the block to the outside world (using the title of the
article on the front page of the London’s daily The Times), but, more
importantly, to offer a comment. The comment gave insight that was both
outward toward the financial system and inward toward Satoshi himself. Any
article title could have been chosen as a timestamp. This one was clearly meant
to convey a message. Satoshi sent the message that he does not favor banks.
More likely, he does not like the fractional reserve banking system and the
endless creation of fiat currency that coincides with fractional reserve banking.
2008 and 2009, when Bitcoin was born, were the years of rampant “cash
injections,” “stimulus packages,” “quantitative easing,” and “too-big-to-fail”
bank bailouts. Bitcoin, with its hard-coded 21 million coin limit, would solve the
fiat addiction. Infinite paper money would be replaced by finite numbers written
in code.

» o«

What’s more, Satoshi fired a shot across the bow of the financial powers-
that-be. Bankers, politicians, and the manipulators of the money supply have not
been happy about Bitcoin and cryptocurrency. Ten years in, the powers seem to
be warming to the idea a bit—or, at least, they’re beginning to realize the use-
cases and the inevitability of crypto. Still, their reluctant “embrace” is very slow
and very cautious. I imagine one of the most threatening things to the powerful is
to suggest that power be taken from them and then dispersed to the people
themselves. Putting power into the hands of the people means saying, “You know
what? We the people really don’t need you after all. Have a nice day.” Bitcoin
suggests this very thing financially—it gives the power, freedom, and
responsibility to the individual. As a boy, my brother and I would occasionally
come upon a hornet’s nest while playing in the woods. When we did, being boys,
there was really nothing else to do but to throw a rock or stick at it, or kick it.
Kicking a hornet’s nest isn’t rational, but just too tempting and just too much fun
not to. And when you do it, you do it fast and then you run like hell!

Since January 2009, some people have placed an almost religious status
onto Satoshi and his writings (the term “Genesis block” serves an example). I do
not subscribe to this position, and I discourage anyone from doing so. Satoshi is,
or was, a man, or a woman, or a group—as fallible and as human as us all. And,
I’m sure he holds just as many hang-ups and weaknesses as anyone else.
Applying demi-god status to a mortal man is unfair to that person, and sets one’s
self up for disappointment. And yet, Satoshi was very clever. So, I do think his
writings, interactions, and thought processes are important, revolutionary, and

worth documenting. I realize that all of these words are fantastically preserved
and organized on websites, particularly at the Satoshi Nakamoto Institute
(https://nakamotoinstitute.org/). Still, having a hard copy for reference or
referral may be appealing to some. And, I realize other such books exist already.
However, they include most, but not all, of Satoshi’s writings and they include
excellent commentary as well. This book is distinct in that it has the entirety of
Satoshi’s work included, is arranged chronologically rather than topically, and
offers almost zero commentary. The goals here were to be complete, to build a
chronological chain of Satoshi’s words and thoughts, and to allow Satoshi’s
words to speak for themselves free from an editor’s interjections. Thus, this book
was assembled.

Following are all of the public writings of Satoshi Nakamoto, the founder of
Bitcoin—at least these are all that I could find. They are arranged in
chronological order. Many of the writings are very technical. Some are purely
code and will read as jibberish to most of us. I debated whether to include these
“writings” or not. But, I wished to have a full account of all of Satoshi’s writings,
and so, even the code was included. Though unwieldly to read, even they convey
a message—Satoshi was focused, businesslike, and pragmatic in his dealings and
work. Since many of the writings are in response to others’ comments, and for the
sake of revealing the context of Satoshi’s words, there are writings by other
people included here as well. However, any non-Satoshi writings are italicized.
Satoshi’s writings can be identified by the fact that they are not italicized.

Satoshi’s words are not italized. They look like this.

Words by others are italicized. They look like this.

Compiling these writings was educational to the editor. It seemed to offer
insight into Satoshi Nakamoto. Lessons were learnt regarding Satoshi combing
through his words, or, at the least, following were my interpretations:

Satoshi is polite. He said “Thanks” or “Thank you” several times. Often,
an exclamation point was included for emphasis. And, he apologizes when
appropriate.

Satoshi is a good teacher. In the earlier phases especially, he patiently and
clearly answers questions one-by-one.

Satoshi is a clear communicator. His English, grammar, and syntax are
nearly flawless. Although he does, on occasion, dabble in textese—he

https://nakamotoinstitute.org/

throws in a WTF and an AFAIK—nearly all of his communications are in
clear, declarative, complete and correct sentences.

Satoshi is a fantastic thinker. He is able to think with beautiful logic. He is
able to think abstractly in concepts via analogies (such as the Gambler’s
Ruin problem in the whitepaper). His more formal logic is seen in his code,
naturally, but it is also witnessed in his writings. For example, in a
response to theymos, Satoshi simply states, “The premise is false,” then he
explains why. As something of an aside, that statement harkens to Ayn
Rand’s Atlas Shrugged, where “check your premises” is an ongoing sub-
theme in the novel. For anyone unfamiliar with the book, the phrase does
two things. First, it’s a reference to Aristotelian logic of non-contradiction
—if two things seem to contradict, they actually don’t, one of them is wrong
—check your premises. And secondly, the uber-theme of the novel itself is
an indictment of government bailouts very similar to the Chancellor’s
brink-of-bailout of January 3, 2009. Atlas Shrugged damns governments
and powers which purport to know what’s best and act for the people’s best
interest, rather than freeing the people to simply act for themselves. I don’t
think Satoshi was thinking Atlas Shrugged when he wrote the premise
statement to theymos. I believe he was merely thinking clearly. But, the
theme of Atlas Shrugged, and the “theme” of Bitcoin, certainly do seem to
coincide with those words.

Satoshi likes to double-space after a sentence is complete. This was the
standard taught to typing or keyboarding students up until roughly the year
2000. Stylometry, studying a person’s literary quirks in writing, has been a
ripe field for pondering the identity of Satoshi Nakamoto. It may be a
stretch, but with few clues, this double-space idiosyncrasy has often been
noted in places like /r/Bitcoin on Reddit. There has also been discussion
about Satoshi’s tendencies toward British spellings of words, such as
cheques for checks, neighbours for neighbors, decentralised or formalised
with an s rather than a z, or use of the word “bloody.” Some say these
British tendencies were for obfuscation—to fake the world. I personally
think there is something to the British influence. His British usage reads
very organicly and unforced. I interpret that Satoshi indeed had some
British-influenced upbringing (e.g., Britain, or Canada or Australia or a
British Caribbean island). Like micro-expressions in facial body language,
wording, in organic thought or writing, becomes hard-coded. To not
release those tendencies would require constant and extreme discipline. Of
course, Satoshi just might well have those qualities and fool me right there!
Regarding double-spacing, I tend to believe that the double-spacing may
well hint at Satoshi’s age...he most likely learned to type when double-
spacing after a period was standard. Revolutionary ideas have often come

in history from people in their 20s or early 30s, but in this case, that seems
too young. Typing this specific way, given the revolutionary thoughts for
Bitcoin, and the technical skill acquired and necessary to create the code,
as well as the polish in writing, Satoshi was likely not young when working
on Bitcoin. Purely speculating, I would guess that he was likely around 40
when the whitepaper came out in 2008...meaning he was likely born around
1968, give-or-take a few years.

Satoshi is a heads-down programmer. Many of the writings here are
mundane coder-talk. They are likely cryptic jibberish to nearly everyone.
Satoshi does not fiddle with small-talk or niceties. He consistently remains
focused and practical. When wished a happy Christmas by Mike Hearn if he
celebrates Christmas, Satoshi makes no response either way. He merely
proceeds to the task-at-hand.

Satoshi values privacy. This is witnessed in his words—naturally for a
cypherpunk—but also in his focused neglect of including anything personal
about himself (or herself), such as the Christmas non-comment. It’s worth
noting here that since Satoshi Nakamoto is unknown, Satoshi’s sex is
unknown. Satoshi may be a man, woman, or group. However, since T h>
is generally a male’s name in Japan, Satoshi is referred to here using
singular, male pronouns.

Satoshi can pack a lot into a few words. His writing style is brief and to-the-
point, but not impolite or terse. On the day the whitepaper was revealed,
when he writes, “I've been working on a new electronic cash system that's
fully peer-to-peer, with no trusted third party,” he could have almost simply
stopped right there.

Satoshi has a practical sense of marketing about him. He understands the
importance of a good icon or logo. He understands that slow growth is not
necessarily a bad thing. And he gets that there is such a thing as bad
publicity (e.g., the WikiLeaks, hornet’s nest comment).

Despite his focused, logical, business-minded tendencies, there seems to me
to be a bit of boyishness about him. This is seldom shown, but it is there,
revealed in his writings in rare glints. This leads to a final conclusion...

Satoshi is human. When he writes to Mike Hearn on Wed, March 9, 2011,
“That’s great news!” the guarded wall that normally shields Satoshi-the-
person seems to quaver. It hints at a real person, with emotions, excitement,
and an almost childlike glee in what he’s doing, lying somewhere behind
the facade of Satoshi Nakamoto. He’s kicking the hornet’s nest himself, and
he knows it. And, when just two days before withdrawing from public posts

10

he writes, “That means a lot coming from you, Hal. Thanks.” I hear a deep
sigh after sending that comment.

- Editor
January 3, 2019

11

Satoshi Nakamoto’s PGP Key

----- BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v1.4.7 (MingW32)

mQGiBEKJ+qcRBADKDTCZLYDRtP1Q7/ShuzBJzUh9hoVVowogf2wWO7U6GI9BgKW24r
piOXYmEr jMFfvNtozNk+33cd/sq3gi0501IMmZzg2rbF4ne5t3ip IXnNuzNh+j+6
VXXA16GPhBRprvnng8r9GYALLUpo9Xk17KE429YYKFgVVtTPtEGU1pO1EWCG7FmW
dBbRp4mn5GfxQNT1hzp9WgkD/3pZ0cB5mdenzfy LOHXmRfIJKBMFO2ZDnsY1GgeHv
/LjkhCusTp2gz4thLycYOFKGMAddpVNMsSE/TYZLgpsx]jrJsrEPNSdoXk3IgEStow
mXjTFroxNOrB20Qk0Z001mipOwWMgse4PmIu02X240apWtyhdHsX30BLcwDdke8aE
gAh8A/sH1K7fL1Bi8rFzx6hb+2yI1D/fazMBVZUeOr2uo7 ldqEz5+GeEiBFignd5
HHhqjJw8rUJkfezZBoTKY1DKo7XDr TRxfyzNuZZPxBLTj+keY8WgYhQ5MWSSC2MX7
FZHaJddYa®pzUmFZmQhOydu1lvUQnLKzRSunsjGOnmxiwWwBZwb6bQjU2FOb3NoaSBO
YWthbW90byA8c2FOb3NoaW5AZ214L mNvbT6IYAQTEQIATIAUCSQN6pwIbAwYLCQgH
AWIEFQIIAWQWAgMBAh4BAheAAAOJEBjAN0ZeyUihXGMANjiwJOfvmSgSM306Tu3q
RME9GN7QAKCGrFw9SUDOe9/YDcghX1aPMrYue7kCDQRJICTQnEAgA90TCjLa6Sj7t
dZcQxNufsDSCSB+yznIGzFGXXpJk7GgKmX3H9Z14E6zJTQGXL2GAV4AKk LkSTNtvgs
SGJKgCnebuzvwutyqlvXRNVFPQFVLVV023jJCBHWjbO3fmXmavIUtRCHoc8xgVJIMQ
LrwvS943GgsqSbdoKzwdTnfnEq+UaGo+Qfv66NpT3Y1LOCXUiINBITZ0JcJdjHDTBO
XRgomX2wWSguv+btYdhQGGQiaEx73XMftXNCxbOpqwsODQns7xTc L2ENru9BNIQME
I7L9FYBQUiKHmM1k6RrBylas8XE1S2jEos7GAMLFF1wShFUX+NF1VOPdbN3ZdFowq
sUjKk+QbrwADBQQA9DiD4+uuRhwk2B1Tmt r XnwwhcdkE7ZbLHjXxBfCsLPAZiPh8c
ICfV3S418i4H1YCz2ItcnC8KAP0S6MipyS28AU1B7zJYPODBN8E7aPSPzHIfudMK
MgiCH1jVJIre23xsKTCOsIhhSKcr2G+6AR0G5 lwuoqJgEyDrb1VQQFpVXBNPHSTqu
05P0oLXQCc7PKgC5SyQuZbEALEKIt12SL2yBRRGO1VJILnvZ6eaovkAlgsbGdlieOro
UwWuJCwzZuBDruMYATYQBVYTfXZun3Zm84rw7Jc 1p18mXITwGCVHY/P5n7QMbBfZQ
A25ymkuj636Ngh+c4zRnSINTyrDcID7AcqEb6IhIBBgRAGAIBQJIICTgnAhsMAA0]
EBjAnoZeyUihPrcAniVW15M44RuGct Je+IMNX4eVKkCO8AJ9v7cXsp5uDdQNo8g3R
8RHWN4Gk8w==

=3FTe

12

The Bitcoin Whitepaper
Source: https://bitcoin.org/bitcoin.pdf

Bitcoin:
A Peer-to-Peer Electronic Cash System
Satoshi Nakamoto
October 31, 2008
Abstract

A purely peer-to-peer version of electronic cash would allow
online payments to be sent directly from one party to another without
going through a financial institution. Digital signatures provide part of
the solution, but the main benefits are lost if a trusted third party is still
required to prevent double-spending. We propose a solution to the
double-spending problem using a peer-to-peer network. The network
timestamps transactions by hashing them into an ongoing chain of hash-
based proof-of-work, forming a record that cannot be changed without
redoing the proof-of-work. The longest chain not only serves as proof of
the sequence of events witnessed, but proof that it came from the largest
pool of CPU power. As long as a majority of CPU power is controlled
by nodes that are not cooperating to attack the network, they'll generate
the longest chain and outpace attackers. The network itself requires
minimal structure. Messages are broadcast on a best effort basis, and
nodes can leave and rejoin the network at will, accepting the longest
proof-of-work chain as proof of what happened while they were gone.

1. Introduction

Commerce on the Internet has come to rely almost exclusively on
financial institutions serving as trusted third parties to process electronic
payments. While the system works well enough for most transactions, it
still suffers from the inherent weaknesses of the trust based model.
Completely non-reversible transactions are not really possible, since
financial institutions cannot avoid mediating disputes. The cost of
mediation increases transaction costs, limiting the minimum practical
transaction size and cutting off the possibility for small casual
transactions, and there is a broader cost in the loss of ability to make
non-reversible payments for non-reversible services. With the possibility
of reversal, the need for trust spreads. Merchants must be wary of their
customers, hassling them for more information than they would
otherwise need. A certain percentage of fraud is accepted as
unavoidable. These costs and payment uncertainties can be avoided in
person by using physical currency, but no mechanism exists to make
payments over a communications channel without a trusted party.

What is needed is an electronic payment system based on
cryptographic proof instead of trust, allowing any two willing parties to

13

https://nakamotoinstitute.org/bitcoin/#introduction
https://nakamotoinstitute.org/bitcoin/#abstract

transact directly with each other without the need for a trusted third
party. Transactions that are computationally impractical to reverse
would protect sellers from fraud, and routine escrow mechanisms could
easily be implemented to protect buyers. In this paper, we propose a
solution to the double-spending problem using a peer-to-peer distributed
timestamp server to generate computational proof of the chronological
order of transactions. The system is secure as long as honest nodes
collectively control more CPU power than any cooperating group of
attacker nodes.

2. Transactions
We define an electronic coin as a chain of digital signatures. Each
owner transfers the coin to the next by digitally signing a hash of the
previous transaction and the public key of the next owner and adding
these to the end of the coin. A payee can verify the signatures to verify
the chain of ownership.

Transaction Transaction Transaction
Owner 1's Owner 2's Owner 3's
Public Key Public Key Public Key

ey

Owner 2's
Signature

Owner 1's
Signature

A
Owner 0's
Signature

> X "
G oE .

s
Py
-
-
-

| Private Key Private Key Private Key

The problem of course is the payee can't verify that one of the
owners did not double-spend the coin. A common solution is to
introduce a trusted central authority, or mint, that checks every
transaction for double spending. After each transaction, the coin must be
returned to the mint to issue a new coin, and only coins issued directly
from the mint are trusted not to be double-spent. The problem with this
solution is that the fate of the entire money system depends on the
company running the mint, with every transaction having to go through
them, just like a bank.

We need a way for the payee to know that the previous owners did
not sign any earlier transactions. For our purposes, the earliest
transaction is the one that counts, so we don't care about later attempts to
double-spend. The only way to confirm the absence of a transaction is to
be aware of all transactions. In the mint based model, the mint was
aware of all transactions and decided which arrived first. To accomplish
this without a trusted party, transactions must be publicly announced™,

14

https://nakamotoinstitute.org/bitcoin/#fn1
https://nakamotoinstitute.org/bitcoin/#transactions

and we need a system for participants to agree on a single history of the
order in which they were received. The payee needs proof that at the
time of each transaction, the majority of nodes agreed it was the first
received.

3. Timestamp Server
The solution we propose begins with a timestamp server. A

timestamp server works by taking a hash of a block of items to be
timestamped and widely publishing the hash, such as in a newspaper or
Usenet post®®!, The timestamp proves that the data must have existed at
the time, obviously, in order to get into the hash. Each timestamp
includes the previous timestamp in its hash, forming a chain, with each
additional timestamp reinforcing the ones before it.

F: Hash |_i Hash

Block Block

‘ Ttem H Item H ‘ ‘ Item H Item H - |

4. Proof-of-Work

To implement a distributed timestamp server on a peer-to-peer
basis, we will need to use a proof-of-work system similar to Adam
Back's Hashcash!®, rather than newspaper or Usenet posts. The proof-of-
work involves scanning for a value that when hashed, such as with
SHA-256, the hash begins with a number of zero bits. The average work
required is exponential in the number of zero bits required and can be
verified by executing a single hash.

For our timestamp network, we implement the proof-of-work by
incrementing a nonce in the block until a value is found that gives the
block's hash the required zero bits. Once the CPU effort has been
expended to make it satisfy the proof-of-work, the block cannot be
changed without redoing the work. As later blocks are chained after it,
the work to change the block would include redoing all the blocks after
it.

Block Block
—->| Prev Hash HNonce| -]l Prev Hash || Nonce| —
EXES N EXES N

15

https://nakamotoinstitute.org/bitcoin/#fn6
https://nakamotoinstitute.org/bitcoin/#proof-of-work
https://nakamotoinstitute.org/bitcoin/#fn2
https://nakamotoinstitute.org/bitcoin/#timestamp-server

The proof-of-work also solves the problem of determining
representation in majority decision making. If the majority were based
on one-IP-address-one-vote, it could be subverted by anyone able to
allocate many IPs. Proof-of-work is essentially one-CPU-one-vote. The
majority decision is represented by the longest chain, which has the
greatest proof-of-work effort invested in it. If a majority of CPU power
is controlled by honest nodes, the honest chain will grow the fastest and
outpace any competing chains. To modify a past block, an attacker
would have to redo the proof-of-work of the block and all blocks after it
and then catch up with and surpass the work of the honest nodes. We
will show later that the probability of a slower attacker catching up
diminishes exponentially as subsequent blocks are added.

To compensate for increasing hardware speed and varying interest
in running nodes over time, the proof-of-work difficulty is determined
by a moving average targeting an average number of blocks per hour. If
they're generated too fast, the difficulty increases.

5. Network

W

The steps to run the network are as follows:
New transactions are broadcast to all nodes.
Each node collects new transactions into a block.
Each node works on finding a difficult proof-of-work for its block.
When a node finds a proof-of-work, it broadcasts the block to all nodes.
Nodes accept the block only if all transactions in it are valid and not
already spent.
Nodes express their acceptance of the block by working on creating the
next block in the chain, using the hash of the accepted block as the
previous hash.

Nodes always consider the longest chain to be the correct one and
will keep working on extending it. If two nodes broadcast different
versions of the next block simultaneously, some nodes may receive one
or the other first. In that case, they work on the first one they received,
but save the other branch in case it becomes longer. The tie will be
broken when the next proof-of-work is found and one branch becomes
longer; the nodes that were working on the other branch will then switch
to the longer one.

New transaction broadcasts do not necessarily need to reach all
nodes. As long as they reach many nodes, they will get into a block
before long. Block broadcasts are also tolerant of dropped messages. If a
node does not receive a block, it will request it when it receives the next
block and realizes it missed one.

6. Incentive

By convention, the first transaction in a block is a special
transaction that starts a new coin owned by the creator of the block. This

16

https://nakamotoinstitute.org/bitcoin/#incentive
https://nakamotoinstitute.org/bitcoin/#network

adds an incentive for nodes to support the network, and provides a way
to initially distribute coins into circulation, since there is no central
authority to issue them. The steady addition of a constant of amount of
new coins is analogous to gold miners expending resources to add gold
to circulation. In our case, it is CPU time and electricity that is
expended.

The incentive can also be funded with transaction fees. If the
output value of a transaction is less than its input value, the difference is
a transaction fee that is added to the incentive value of the block
containing the transaction. Once a predetermined number of coins have
entered circulation, the incentive can transition entirely to transaction
fees and be completely inflation free.

The incentive may help encourage nodes to stay honest. If a greedy
attacker is able to assemble more CPU power than all the honest nodes,
he would have to choose between using it to defraud people by stealing
back his payments, or using it to generate new coins. He ought to find it
more profitable to play by the rules, such rules that favour him with
more new coins than everyone else combined, than to undermine the
system and the validity of his own wealth.

7. Reclaiming Disk Space
Once the latest transaction in a coin is buried under enough blocks,
the spent transactions before it can be discarded to save disk space. To
facilitate this without breaking the block's hash, transactions are hashed
in a Merkle Tree %! with only the root included in the block's hash.
Old blocks can then be compacted by stubbing off branches of the tree.
The interior hashes do not need to be stored.

Hack Elock Header (Block Hazh) ok Block Header (Bleck Hazh)
| PrevHash || Nonce | | Prev Hazh Monce
Foot Hazh ..L‘;‘lt['.is.."l.

A X /\

Hash0 | { Haohl || Hadd | B3 | Hash2 | ¢ Hauk |
0 || || 2 || o | TS |
Tranzacrion: Hazhed in a hlarkle Tres After Pnmming Tx0-2 from the Block

17

https://nakamotoinstitute.org/bitcoin/#fn5
https://nakamotoinstitute.org/bitcoin/#fn2
https://nakamotoinstitute.org/bitcoin/#fn7
https://nakamotoinstitute.org/bitcoin/#reclaiming-disk-space

A block header with no transactions would be about 80 bytes. If we
suppose blocks are generated every 10 minutes, 80 bytes * 6 * 24 * 365
= 4.2MB per year. With computer systems typically selling with 2GB of
RAM as of 2008, and Moore's Law predicting current growth of 1.2GB
per year, storage should not be a problem even if the block headers must
be kept in memory.

8. Simplified Payment Verification

It is possible to verify payments without running a full network
node. A user only needs to keep a copy of the block headers of the
longest proof-of-work chain, which he can get by querying network
nodes until he's convinced he has the longest chain, and obtain the
Merkle branch linking the transaction to the block it's timestamped in.
He can't check the transaction for himself, but by linking it to a place in
the chain, he can see that a network node has accepted it, and blocks
added after it further confirm the network has accepted it.

Block Header Block Header Block Header
- = > = | 3
—T* PrevHash || Nonce } Prev Hash || Nomce | | PrevHash ‘ Nonce —
Merkle Root Merkle Root Merkle Root
s L S—
| Hashol

Merkle Branch for Tx3

ESE

x3

As such, the verification is reliable as long as honest nodes control
the network, but is more vulnerable if the network is overpowered by an
attacker. While network nodes can verify transactions for themselves,
the simplified method can be fooled by an attacker's fabricated
transactions for as long as the attacker can continue to overpower the
network. One strategy to protect against this would be to accept alerts
from network nodes when they detect an invalid block, prompting the
user's software to download the full block and alerted transactions to
confirm the inconsistency. Businesses that receive frequent payments
will probably still want to run their own nodes for more independent
security and quicker verification.

9. Combining and Splitting Value
Although it would be possible to handle coins individually, it
would be unwieldy to make a separate transaction for every cent in a
transfer. To allow value to be split and combined, transactions contain

18

https://nakamotoinstitute.org/bitcoin/#combining-and-splitting-value
https://nakamotoinstitute.org/bitcoin/#simplified-payment-verification

multiple inputs and outputs. Normally there will be either a single input
from a larger previous transaction or multiple inputs combining smaller
amounts, and at most two outputs: one for the payment, and one
returning the change, if any, back to the sender.

Transaction

—He [

| — + = |

It should be noted that fan-out, where a transaction depends on
several transactions, and those transactions depend on many more, is not
a problem here. There is never the need to extract a complete standalone
copy of a transaction's history.

10. Privacy

The traditional banking model achieves a level of privacy by
limiting access to information to the parties involved and the trusted
third party. The necessity to announce all transactions publicly precludes
this method, but privacy can still be maintained by breaking the flow of
information in another place: by keeping public keys anonymous. The
public can see that someone is sending an amount to someone else, but
without information linking the transaction to anyone. This is similar to
the level of information released by stock exchanges, where the time and
size of individual trades, the "tape", is made public, but without telling
who the parties were.

Traditional Privacy Model

i 7.3 Trusted G . i
[Identities H Transactions }—O Third Party —F(Counterparty ‘ ’ Public ‘

New Privacy Model

‘ Identities ‘ I Transactions H Public ‘

As an additional firewall, a new key pair should be used for each
transaction to keep them from being linked to a common owner. Some
linking is still unavoidable with multi-input transactions, which
necessarily reveal that their inputs were owned by the same owner. The

19

https://nakamotoinstitute.org/bitcoin/#privacy

risk is that if the owner of a key is revealed, linking could reveal other
transactions that belonged to the same owner.

11. Calculations

We consider the scenario of an attacker trying to generate an
alternate chain faster than the honest chain. Even if this is accomplished,
it does not throw the system open to arbitrary changes, such as creating
value out of thin air or taking money that never belonged to the attacker.
Nodes are not going to accept an invalid transaction as payment, and
honest nodes will never accept a block containing them. An attacker can
only try to change one of his own transactions to take back money he
recently spent.

The race between the honest chain and an attacker chain can be
characterized as a Binomial Random Walk. The success event is the
honest chain being extended by one block, increasing its lead by +1, and
the failure event is the attacker's chain being extended by one block,
reducing the gap by -1.

The probability of an attacker catching up from a given deficit is
analogous to a Gambler's Ruin problem. Suppose a gambler with
unlimited credit starts at a deficit and plays potentially an infinite
number of trials to try to reach breakeven. We can calculate the
probability he ever reaches breakeven, or that an attacker ever catches
up with the honest chain, as follows:

pqqz=== probability an honest node finds the next
block probability the attacker finds the next block probability the
attacker will ever catch up from z blocks behindp= probability an honest
node finds the next blockq= probability the attacker finds the next
blockqz= probability the attacker will ever catch up from z blocks
behind

qz={1(q/p)zifp<qifp>q}qz={1ifp<q(q/p)zifp>q}

Given our assumption that p>qp>q, the probability drops
exponentially as the number of blocks the attacker has to catch up with
increases. With the odds against him, if he doesn't make a lucky lunge
forward early on, his chances become vanishingly small as he falls
further behind.

We now consider how long the recipient of a new transaction
needs to wait before being sufficiently certain the sender can't change
the transaction. We assume the sender is an attacker who wants to make
the recipient believe he paid him for a while, then switch it to pay back
to himself after some time has passed. The receiver will be alerted when
that happens, but the sender hopes it will be too late.

The receiver generates a new key pair and gives the public key to
the sender shortly before signing. This prevents the sender from
preparing a chain of blocks ahead of time by working on it continuously
until he is lucky enough to get far enough ahead, then executing the

20

https://nakamotoinstitute.org/bitcoin/#fn8
https://nakamotoinstitute.org/bitcoin/#calculations

transaction at that moment. Once the transaction is sent, the dishonest
sender starts working in secret on a parallel chain containing an alternate
version of his transaction.

The recipient waits until the transaction has been added to a block
and zz blocks have been linked after it. He doesn't know the exact
amount of progress the attacker has made, but assuming the honest
blocks took the average expected time per block, the attacker's potential
progress will be a Poisson distribution with expected value:

A=zqpA=zqp

To get the probability the attacker could still catch up now, we
multiply the Poisson density for each amount of progress he could have
made by the probability he could catch up from that point:

Y k=000oAke—Ak!-{(q/p)(z—k)1ifk<zitk>z} Y k=0coAke—Ak!-{(q/p)
(z—k)ifk<z1ifk>z}

Rearranging to avoid summing the infinite tail of the distribution...

1-Y k=0zAke-Ak!(1-(q/p)(z—k))1-Y k=0zAke—Ak!(1-(q/p)(z—k))

Converting to C code...

#include

double AttackerSuccessProbability(double q, int z)

{

doublep=1.0 -q;
double lambda =z * (q / p);
double sum = 1.0;
int i, k;
for (k = 0; k <= z; k++)
{
double poisson = exp(-lambda);
fori=1;i<=k;i++)
poisson *= lambda / i;
sum -= poisson * (1 - pow(q / p, z - k));
}
return sum;

}

Running some results, we can see the probability drop off
exponentially with zz.

q=0.1

z=0 P=1.0000000
z=1 P=0.2045873
z=2 P=0.0509779
z=3 P=0.0131722
z=4 P=0.0034552
z=5 P=0.0009137
z=6 P=0.0002428
z=7 P=0.0000647

21

P=0.0000173
P=0.0000046
0 P=0.0000012

z=8
z=9
z=1

0.3

P=1.0000000
P=0.1773523
0 P=0.0416605
z=15 P=0.0101008
z=20 P=0.0024804
z=25 P=0.0006132
z=30 P=0.0001522
z=35 P=0.0000379
z=40 P=0.0000095
z=45 P=0.0000024
z=50 P=0.0000006

NNblll._D

0
5
1

Solving for P less than 0.1%...
P <0.001

q=0.10 z=5

q=0.15 z=8

q=0.20 z=11

g=0.25 z=15

q=0.30 z=24

g=0.35 z=41

q=0.40 z=89

q=0.45 z=340

12. Conclusion

We have proposed a system for electronic transactions without
relying on trust. We started with the usual framework of coins made
from digital signatures, which provides strong control of ownership, but
is incomplete without a way to prevent double-spending. To solve this,
we proposed a peer-to-peer network using proof-of-work to record a
public history of transactions that quickly becomes computationally
impractical for an attacker to change if honest nodes control a majority
of CPU power. The network is robust in its unstructured simplicity.
Nodes work all at once with little coordination. They do not need to be
identified, since messages are not routed to any particular place and only
need to be delivered on a best effort basis. Nodes can leave and rejoin
the network at will, accepting the proof-of-work chain as proof of what
happened while they were gone. They vote with their CPU power,
expressing their acceptance of valid blocks by working on extending
them and rejecting invalid blocks by refusing to work on them. Any

22

https://nakamotoinstitute.org/bitcoin/#conclusion

needed rules and incentives can be enforced with this consensus
mechanism.

References

1.
2.

W. Dai, "b-money," http://www.weidai.com/bmoney.txt, 1998. <
H. Massias, X.S. Avila, and J.-J. Quisquater, "Design of a secure

timestamping service with minimal trust requirements," In 20th
Symposium on Information Theory in the Benelux, May 1999. « <«

S. Haber, W.S. Stornetta, "How to time-stamp a digital

document," In Journal of Cryptology, vol 3, no 2, pages 99-111,

1991. «

D. Bayer, S. Haber, W.S. Stornetta, "Improving the efficiency and
reliability of digital time-stamping," In Sequences II: Methods in
Communication, Security and Computer Science, pages 329-334,

1993. &

S. Haber, W.S. Stornetta, "Secure names for bit-strings." In Proceedings
of the 4th ACM Conference on Computer and Communications Security,
pages 28-35, April 1997. « «

A. Back, "Hashcash - a denial of service counter-
measure,"http://www.hashcash.org/papers/hashcash.pdf, 2002. «

R.C. Merkle, "Protocols for public key cryptosystems," In Proc. 1980
Symposium on Security and Privacy, IEEE Computer Society, pages

122-133, April 1980. «
W. Feller, "An introduction to probability theory and its
applications," 1957. «

23

./%5B8%5D
http://nakamotoinstitute.org/introduction-probability-theory-vol-i.pdf
http://nakamotoinstitute.org/introduction-probability-theory-vol-i.pdf
./%5B7%5D
http://nakamotoinstitute.org/public-key-cryptosystems.pdf
./%5B6%5D
http://www.hashcash.org/papers/hashcash.pdf
http://nakamotoinstitute.org/hashcash.pdf
http://nakamotoinstitute.org/hashcash.pdf
./%5B5%5D
./%5B2-5%5D
http://nakamotoinstitute.org/secure-names-bit-strings.pdf
./%5B2-5%5D
http://nakamotoinstitute.org/improving-time-stamping.pdf
http://nakamotoinstitute.org/improving-time-stamping.pdf
./%5B2-5%5D
http://nakamotoinstitute.org/time-stamp-digital-document.pdf
http://nakamotoinstitute.org/time-stamp-digital-document.pdf
./%5B2%5D
./%5B2-5%5D
http://nakamotoinstitute.org/secure-timestamping-service.pdf
http://nakamotoinstitute.org/secure-timestamping-service.pdf
./%5B1%5D
http://www.weidai.com/bmoney.txt
http://nakamotoinstitute.org/b-money/
https://nakamotoinstitute.org/bitcoin/#references

Emails, mailing list writings, forum posts by Satoshi Nakamoto
(arranged in chronological order):

Adam Back “COPA trial” email (these Adam Back-
Satoshi emails became public in February of 2024)

From: "satoshi@anonymousspeech.com"
<satoshi@anonymousspeech.com>

Sent: Wed 8/20/2008 6:30:39 PM (UTC+01:00)
To: adam@cypherspace.org
Subject: Citation of your Hashcash paper

I'm getting ready to release a paper that references your Hashcash paper
and I wanted to make sure I have the citation right. Here's what I have:

[5] A. Back, "Hashcash - a denial of service counter-measure,"
http://www.hashcash.org/papers/hashcash.pdf, 2002.

I think you would find it interesting, since it finds a new use for hash-
based proof-of-work as a way to make e-cash work. You can download
a pre-release draft at http://www.upload.ae/file/6157/ecashpdf.html Feel
free to forward it to anyone else you think would be interested. I'm also
nearly finished with a C++ implementation to release as open source.

Title: Electronic Cash Without a Trusted Third PartyAbstract: A purely
peer-to-peer version of electronic cash would allow online payments to
be sent directly from one party to another without the burdens of going
through a financial institution. Digital signatures offer part of the
solution, but the main benefits are lost if a trusted party is still required
to prevent double-spending. We propose a solution to the
doublespending problem using a peer-to-peer network. The network
timestamps transactions by hashing them into an ongoing chain of hash-
based proof-of-work, forming a record that cannot be changed without
redoing the proof-of-work. The longest chain not only serves as proof of
the sequence of events witnessed, but proof that it came from the largest
pool of CPU power. As long as honest nodes control the most CPU
power on the network, they can generate the longest chain and outpace
any attackers. The network itself requires minimal structure. Messages
are broadcasted on a best effort basis, and nodes can leave and rejoin the

24

network at will, accepting the longest proof-of-work chain as proof of
what happened while they were gone.

satoshi@anonymousspeech.com

Adam Back “COPA trial” email

From: "Adam Back" <adam@cypherspace.org>
Sent: Thur 8/21/2008 1:55:59 PM (UTC+01:00)
To: satoshi@anonymousspeech.com

Cc: adam@cypherspace.org

Subject: Re: Citation of your Hashcash paper

Yes citation looks fine, I'll take a look at your paper. You maybe aware
of the "B-money" proposal, I guess google can find it for you, by Wei
Dai which sounds to be somewhat related to your paper. (The b-money
idea is just described concisely on his web page, he didn’t write up a

paper).

Adam

On Wed, Aug 20, 2008 at 6:30 PM, satoshi@anonymousspeech.com
<satoshi@anonymousspeech.com> wrote:

> I'm getting ready to release a paper that references your Hashcash
paper and I wanted to make sure I have the citation right. Here's what I
have:

>
> [5] A. Back, "Hashcash - a denial of service counter-measure,"

http://www.hashcash.org/papers/hashcash.pdf, 2002.

>

> 1 think you would find it interesting, since it finds a new use for hash-
based proof-of-work as a way to make e-cash work. You can download

a pre-release draft at http://www.upload.ae/file/6157/ecashpdf.html Feel
free to forward it to anyone else you think would be interested. I'm also

nearly finished with a C++ implementation to release as open source.

25

>

> Title: Electronic Cash Without a Trusted Third Party

>

> Abstract: A purely peer-to-peer version of electronic cash would allow
online payments to be sent directly from one party to another without
the burdens of going through a financial institution. Digital signatures
offer part of the solution, but the main benefits are lost if a trusted party
is still required to prevent double-spending. We propose a solution to the
double-spending problem using a peer-to-peer network. The network
timestamps transactions by hashing them into an ongoing chain of hash-
based

proof-of-work, forming a record that cannot be changed without redoing
the proof-of-work. The longest chain not only serves as proof of the
sequence of events witnessed, but proof that it came from the largest
pool of CPU power. As long as honest nodes control the most CPU
power on the network, they can generate the longest chain and outpace
any attackers. The network itself requires minimal structure. Messages
are broadcasted on a best effort basis, and nodes can leave and rejoin the
network at will, accepting the longest proof-of-work chain as proof of
what happened while they were gone.

>

> satoshi@anonymousspeech.com

>

Adam Back “COPA trial” email

From: "satoshi@anonymousspeech.com"
<satoshi@anonymousspeech.com>

Sent: Thur 8/21/2008 6:59:49 PM (UTC+01:00)
To: adam@cypherspace.org

Subject: RE: Citation of your Hashcash paper

26

Thanks, I wasn't aware of the b-money page, but my ideas start from
exactly that point. I'll e-mail him to confirm the year of publication so I
can credit him.

The main thing my system adds is to also use proof-of-work to support a
distributed timestamp server. While users are generating proof-of-work
to make new coins for themselves, the same proof-of-work is also
supporting the network timestamping. This is instead of Usenet.

Satoshi

>Yes citation looks fine, I'll take a look at your paper. You maybe
>aware of the "B-money" proposal, I guess google can find it for you,
>by Wei Dai which sounds to be somewhat related to your paper. (The
>b-money idea is just described concisely on his web page, he didnt
>write up a paper).

>

>Adam

>>0n Wed, Aug 20, 2008 at 6:30 PM, satoshi@anonymousspeech.com
><satoshi@anonymousspeech.com> wrote:

>> I'm getting ready to release a paper that references your Hashcash
paper and I wanted to make sure I have the citation right. Here's what I
have:

>>
>> [5] A. Back, "Hashcash - a denial of service counter-measure,"

http://www.hashcash.org/papers/hashcash.pdf, 2002.

>>

>> [think you would find it interesting, since it finds a new use for
hash-based proof-of-work as a way to make e-cash work. You can
download a pre-release draft at
http://www.upload.ae/file/6157/ecashpdf.html Feel free to forward it to
anyone else you think would be interested. I'm also nearly finished with
a C++ implementation to release as open source.

27

>>

>> Title: Electronic Cash Without a Trusted Third Party

>>

>> Abstract: A purely peer-to-peer version of electronic cash would
allow online payments to be sent directly from one party to another
without the burdens of going through a financial institution. Digital
signatures offer part of the solution, but the main benefits are lost if a
trusted party is still required to prevent double-spending. We propose a
solution to the double-spending problem using a peer-to-peer network.
The network timestamps transactions by hashing them into an ongoing
chain of hash-based proof-of-work, forming a record that cannot be
changed without redoing the proof-of-work. The longest chain not only
serves as proof of the sequence of events witnessed, but proof that it
came from the largest pool of CPU power. As long as honest nodes
control the most CPU power on the network, they can generate the
longest chain and outpace any attackers. The network itself requires
minimal structure. Messages are broadcasted on a best effort basis, and
nodes can leave and rejoin the network at will, accepting the longest
proof-of-work chain as proof of what happened while they were gone.

>>

>> satoshi@anonymousspeech.com

>>

Adam Back “COPA trial” email

From: "Adam Back" <adam@cypherspace.org>

Sent: Thur 8/21/2008 7:17:17 PM (UTC+01:00)

To: satoshi@anonymousspeech.com

Cc: adam@cypherspace.org

Subject: Re: Citation of your Hashcash paper

Sorry still not read your paper yet, but another related paper is by

Rivest et al called micromint, which uses k-way collisions to create

28

an over-time computational advantage for the bank in creating coins.
What you said about one group of players having an advantage (by
compute cycles) reminded me of micromint. In micromint the bank gets
an increasing advantage over time as there is some cumulative build up
of advantage in terms of the partial results accumulated helping

create further the partial-collisions more cheaply.

Adam

On Thu, Aug 21, 2008 at 6:59 PM, satoshi@anonymousspeech.com
<satoshi@anonymousspeech.com> wrote:

> Thanks, I wasn't aware of the b-money page, but my ideas start from
exactly that point. I'll e-mail him to confirm the year of publication so I
can credit him.

>

> The main thing my system adds is to also use proof-of-work to support
a distributed timestamp server. While users are generating proof-of-
work to make new coins for themselves, the same proof-of-work is also
supporting the network timestamping. This is instead of Usenet.

>

> Satoshi

>

>>Yes citation looks fine, I'll take a look at your paper. You maybe
>>aware of the "B-money" proposal, I guess google can find it for you,
>>by Wei Dai which sounds to be somewhat related to your paper. (The
>>b-money idea is just described concisely on his web page, he didnt
>>write up a paper).

>>

>>Adam

29

>>
>>0n Wed, Aug 20, 2008 at 6:30 PM, satoshi@anonymousspeech.com
>><satoshi@anonymousspeech.com> wrote:

>>>I'm getting ready to release a paper that references your Hashcash
paper and I wanted to make sure I have the citation right. Here's what I
have:

>>>
>>> [5] A. Back, "Hashcash - a denial of service counter-measure,"

http://www.hashcash.org/papers/hashcash.pdf, 2002.

>>>

>>> [think you would find it interesting, since it finds a new use for
hash-based proof-of-work as a way to make e-cash work. You can
download a pre-release draft at
http://www.upload.ae/file/6157/ecashpdf.html Feel free to forward it to
anyone else you think would be interested. I'm also nearly finished with
a C++ implementation to release as open source.

>>>

>>> Title: Electronic Cash Without a Trusted Third Party

>>>

>>> Abstract: A purely peer-to-peer version of electronic cash would
allow online payments to be sent directly from one party to another
without the burdens of going through a financial institution. Digital
signatures offer part of the solution, but the main benefits are lost if a
trusted party is still required toprevent double-spending. We propose a
solution to the double-spending problem using a peer-to-peer network.
The network timestamps transactions by hashing them into an ongoing
chain of hash-based proof-of-work, forming a record that cannot be
changed without redoing the proof-of-work. The longest chain not only
serves as proof of the sequence of events witnessed, but proof that it
came from the largest pool of CPU power. As long as honest nodes
control the most CPU power on the network, they can generate the
longest chain and outpace any attackers. The network itself requires
minimal structure. Messages are broadcasted on a best effort basis, and

30

nodes can leave and rejoin the network at will, accepting the longest
proof-of-work chain as proof of what happened while they were gone.

>>>

>>> satoshi@anonymousspeech.com

>>>

Cryptography Mailing List
Bitcoin P2P e-cash paper
2008-10-31 18:10:00 UTC - -

I've been working on a new electronic cash system that's fully
peer-to-peer, with no trusted third party.

The paper is available at:
http://www.bitcoin.org/bitcoin.pdf

The main properties:

Double-spending is prevented with a peer-to-peer network.
No mint or other trusted parties.

Participants can be anonymous.

New coins are made from Hashcash style proof-of-work.
The proof-of-work for new coin generation also powers the
network to prevent double-spending.

Bitcoin: A Peer-to-Peer Electronic Cash System
Abstract. A purely peer-to-peer version of electronic cash would allow online

payments to be sent directly from one party to another without the burdens of
going through a financial institution. Digital signatures provide part of the

solution, but the main benefits are lost if a trusted party is still required to prevent

double-spending. We propose a solution to the double-spending problem using a
peer-to-peer network. The network timestamps transactions by hashing them into
an ongoing chain of hash-based proof-of-work, forming a record that cannot be
changed without redoing the proof-of-work. The longest chain not only serves as
proof of the sequence of events witnessed, but proof that it came from the largest
pool of CPU power. As long as honest nodes control the most CPU power on the
network, they can generate the longest chain and outpace any attackers. The

network itself requires minimal structure. Messages are broadcasted on a best
effort basis, and nodes can leave and rejoin the network at will, accepting the
longest proof-of-work chain as proof of what happened while they were gone.

31

Full paper at:
http://www.bitcoin.org/bitcoin.pdf

Satoshi Nakamoto

Cryptography Mailing List
Bitcoin P2P e-cash paper
2008-11-03 01:37:43 UTC - -

>Satoshi Nakamoto wrote:

>> T've been working on a new electronic cash system that's fully

>> peer-to-peer, with no trusted third party.

>>

>> The paper is available at:

>> http://www.bitcoin.org/bitcoin.pdf

>

>We very, very much need such a system, but the way I understand your
>proposal, it does not seem to scale to the required size.

>

>For transferable proof of work tokens to have value, they must have
>monetary value. To have monetary value, they must be transferred within
>a very large network - for example a file trading network akin to
>bittorrent.

>

>To detect and reject a double spending event in a timely manner, one
>must have most past transactions of the coins in the transaction, which,
> naively implemented, requires each peer to have most past
>transactions, or most past transactions that occurred recently. If
>hundreds of millions of people are doing transactions, that is a lot of
>bandwidth - each must know all, or a substantial part thereof.

>

Long before the network gets anywhere near as large as that, it would be safe for
users to use Simplified Payment Verification (section 8) to check for double
spending, which only requires having the chain of block headers, or about 12KB
per day. Only people trying to create new coins would need to run network
nodes. At first, most users would run network nodes, but as the network grows
beyond a certain point, it would be left more and more to specialists with server
farms of specialized hardware. A server farm would only need to have one node
on the network and the rest of the LAN connects with that one node.

32

The bandwidth might not be as prohibitive as you think. A typical transaction
would be about 400 bytes (ECC is nicely compact). Each transaction has to be
broadcast twice, so lets say 1KB per transaction. Visa processed 37 billion
transactions in FY2008, or an average of 100 million transactions per day. That
many transactions would take 100GB of bandwidth, or the size of 12 DVD or 2
HD quality movies, or about $18 worth of bandwidth at current prices.

If the network were to get that big, it would take several years, and by then,
sending 2 HD movies over the Internet would probably not seem like a big deal.

Satoshi Nakamoto

Cryptography Mailing List
Bitcoin P2P e-cash paper
2008-11-03 16:23:49 UTC - -

>> As long as honest nodes control the most CPU power on the network,
>> they can generate the longest chain and outpace any attackers.

>

>But they don't. Bad guys routinely control zombie farms of 100,000
>machines or more. People I know who run a blacklist of spam sending
>zombies tell me they often see a million new zombies a day.

>

>This is the same reason that hashcash can't work on today's Internet
>-- the good guys have vastly less computational firepower than the bad

>guys.
Thanks for bringing up that point.

I didn't really make that statement as strong as I could have. The requirement is
that the good guys collectively have more CPU power than any single attacker.

There would be many smaller zombie farms that are not big enough to overpower
the network, and they could still make money by generating bitcoins. The smaller
farms are then the "honest nodes". (I need a better term than "honest") The more
smaller farms resort to generating bitcoins, the higher the bar gets to overpower
the network, making larger farms also too small to overpower it so that they may
as well generate bitcoins too. According to the "long tail" theory, the small,
medium and merely large farms put together should add up to a lot more than the
biggest zombie farm.

33

Even if a bad guy does overpower the network, it's not like he's instantly rich. All
he can accomplish is to take back money he himself spent, like bouncing a check.
To exploit it, he would have to buy something from a merchant, wait till it ships,
then overpower the network and try to take his money back. I don't think he could
make as much money trying to pull a carding scheme like that as he could by
generating bitcoins. With a zombie farm that big, he could generate more bitcoins
than everyone else combined.

The Bitcoin network might actually reduce spam by diverting zombie farms to
generating bitcoins instead.

Satoshi Nakamoto

Cryptography Mailing List
Bitcoin P2P e-cash paper
2008-11-06 20:15:40 UTC - -

>[Lengthy exposition of vulnerability of a systm to use-of-force
>monopolies ellided.]
>

>You will not find a solution to political problems in cryptography.

Yes, but we can win a major battle in the arms race and gain a new territory of
freedom for several years.

Governments are good at cutting off the heads of a centrally controlled networks
like Napster, but pure P2P networks like Gnutella and Tor seem to be holding
their own.

Satoshi

Cryptography Mailing List
Bitcoin P2P e-cash paper
2008-11-08 18:54:38 UTC - -

Ray Dillinger:

> the "currency" is inflationary at about 35%

> as that's how much faster computers get annually
> ... the inflation rate of 35% is almost guaranteed

34

> by the technology

Increasing hardware speed is handled: "To compensate for increasing hardware
speed and varying interest in running nodes over time, the proof-of-work
difficulty is determined by a moving average targeting an average number of
blocks per hour. If they're generated too fast, the difficulty increases."

As computers get faster and the total computing power applied to creating
bitcoins increases, the difficulty increases proportionally to keep the total new
production constant. Thus, it is known in advance how many new bitcoins will be
created every year in the future.

The fact that new coins are produced means the money supply increases by a
planned amount, but this does not necessarily result in inflation. If the supply of
money increases at the same rate that the number of people using it increases,
prices remain stable. If it does not increase as fast as demand, there will be
deflation and early holders of money will see its value increase.

Coins have to get initially distributed somehow, and a constant rate seems like
the best formula.

Satoshi Nakamoto

Cryptography Mailing List
Bitcoin P2P e-cash paper
2008-11-09 01:58:48 UTC - -

Hal Finney wrote:

> it is mentioned that if a broadcast transaction does not reach all nodes,
> it is OK, as it will get into the block chain before long. How does this

> happen - what if the node that creates the "next" block (the first node

> to find the hashcash collision) did not hear about the transaction,

> and then a few more blocks get added also by nodes that did not hear
> about that transaction? Do all the nodes that did hear it keep that

> transaction around, hoping to incorporate it into a block once they get
> lucky enough to be the one which finds the next collision?

Right, nodes keep transactions in their working set until they get into a block. If a
transaction reaches 90% of nodes, then each time a new block is found, it has a
90% chance of being in it.

35

> Or for example, what if a node is keeping two or more chains around as
> it waits to see which grows fastest, and a block comes in for chain A

> which would include a double-spend of a coin that is in chain B? Is that
> checked for or not? (This might happen if someone double-spent and two
> different sets of nodes heard about the two different transactions with

> the same coin.)

That does not need to be checked for. The transaction in whichever branch ends
up getting ahead becomes the valid one, the other is invalid. If someone tries to
double spend like that, one and only one spend will always become valid, the
others invalid.

Receivers of transactions will normally need to hold transactions for perhaps an
hour or more to allow time for this kind of possibility to be resolved. They can
still re-spend the coins immediately, but they should wait before taking an action
such as shipping goods.

> I also don't understand exactly how double-spending, or cancelling

> transactions, is accomplished by a superior attacker who is able to muster
> more computing power than all the honest participants. I see that he can
> create new blocks and add them to create the longest chain, but how can
> he erase or add old transactions in the chain? As the attacker sends out

> his new blocks, aren't there consistency checks which honest nodes can

> perform, to make sure that nothing got erased? More explanation of this
> attack would be helpful, in order to judge the gains to an attacker from

> this, versus simply using his computing power to mint new coins honestly.

The attacker isn't adding blocks to the end. He has to go back and redo the block
his transaction is in and all the blocks after it, as well as any new blocks the
network keeps adding to the end while he's doing that. He's rewriting history.
Once his branch is longer, it becomes the new valid one.

This touches on a key point. Even though everyone present may see the
shenanigans going on, there's no way to take advantage of that fact.

It is strictly necessary that the longest chain is always considered the valid one.
Nodes that were present may remember that one branch was there first and got
replaced by another, but there would be no way for them to convince those who
were not present of this. We can't have subfactions of nodes that cling to one
branch that they think was first, others that saw another branch first, and others
that joined later and never saw what happened. The CPU power proof-of-work
vote must have the final say. The only way for everyone to stay on the same page
is to believe that the longest chain is always the valid one, no matter what.

36

> As far as the spending transactions, what checks does the recipient of a

> coin have to perform? Does she need to go back through the coin's entire
> history of transfers, and make sure that every transaction on the list is

> indeed linked into the "timestamp" block chain? Or can she just do the

> latest one?

The recipient just needs to verify it back to a depth that is sufficiently far back in
the block chain, which will often only require a depth of 2 transactions. All
transactions before that can be discarded.

> Do the timestamp nodes check transactions, making sure that
> the previous transaction on a coin is in the chain, thereby enforcing
> the rule that all transactions in the chain represent valid coins?

Right, exactly. When a node receives a block, it checks the signatures of every
transaction in it against previous transactions in blocks. Blocks can only contain
transactions that depend on valid transactions in previous blocks or the same
block. Transaction C could depend on transaction B in the same block and B
depends on transaction A in an earlier block.

> Sorry about all the questions, but as I said this does seem to be a

> very promising and original idea, and I am looking forward to seeing
> how the concept is further developed. It would be helpful to see a more
> process oriented description of the idea, with concrete details of the

> data structures for the various objects (coins, blocks, transactions),

> the data which is included in messages, and algorithmic descriptions

> of the procedures for handling the various events which would occur in
> this system. You mentioned that you are working on an implementation,
> but I think a more formal, text description of the system would be a

> helpful next step.

I appreciate your questions. I actually did this kind of backwards. I had to write
all the code before I could convince myself that I could solve every problem, then
I wrote the paper. I think I will be able to release the code sooner than I could
write a detailed spec. You're already right about most of your assumptions where
you filled in the blanks.

Satoshi Nakamoto

Cryptography Mailing List

37

Bitcoin P2P e-cash paper
2008-11-09 03:09:49 UTC - -

James A. Donald wrote:

> The core concept is that lots of entities keep complete and consistent

> information as to who owns which bitcoins.

>

> But maintaining consistency is tricky. It is not clear to me what

> happens when someone reports one transaction to one maintainer, and
> someone else transports another transaction to another maintainer. The
> transaction cannot be known to be valid until it has been incorporated
> into a globally shared view of all past transactions, and no one can

> know that a globally shared view of all past transactions is globally

> shared until after some time has passed, and after many new

> transactions have arrived.

>

> Did you explain how to do this, and it just passed over my head, or

> were you confident it could be done, and a bit vague as to the details?

The proof-of-work chain is the solution to the synchronisation problem, and to
knowing what the globally shared view is without having to trust anyone.

A transaction will quickly propagate throughout the network, so if two versions
of the same transaction were reported at close to the same time, the one with the
head start would have a big advantage in reaching many more nodes first. Nodes
will only accept the first one they see, refusing the second one to arrive, so the
earlier transaction would have many more nodes working on incorporating it into
the next proof-of-work. In effect, each node votes for its viewpoint of which
transaction it saw first by including it in its proof-of-work effort.

If the transactions did come at exactly the same time and there was an even split,
it's a toss up based on which gets into a proof-of-work first, and that decides
which is valid.

When a node finds a proof-of-work, the new block is propagated throughout the
network and everyone adds it to the chain and starts working on the next block
after it. Any nodes that had the other transaction will stop trying to include it in a
block, since it's now invalid according to the accepted chain.

The proof-of-work chain is itself self-evident proof that it came from the globally
shared view. Only the majority of the network together has enough CPU power to
generate such a difficult chain of proof-of-work. Any user, upon receiving the
proof-of-work chain, can see what the majority of the network has approved.
Once a transaction is hashed into a link that's a few links back in the chain, it is

38

firmly etched into the global history.

Satoshi Nakamoto

Cryptography Mailing List
Bitcoin P2P e-cash paper
2008-11-09 16:31:26 UTC - -

James A. Donald wrote:

>OK, suppose one node incorporates a bunch of
>transactions in its proof of work, all of them honest
>legitimate single spends and another node incorporates a
>different bunch of transactions in its proof of

>work, all of them equally honest legitimate single
>spends, and both proofs are generated at about the same
>time.

>

>What happens then?

They both broadcast their blocks. All nodes receive them and keep both, but only
work on the one they received first. We'll suppose exactly half received one first,
half the other.

In a short time, all the transactions will finish propagating so that everyone has
the full set. The nodes working on each side will be trying to add the transactions
that are missing from their side. When the next proof-of-work is found,
whichever previous block that node was working on, that branch becomes longer
and the tie is broken. Whichever side it is, the new block will contain the other
half of the transactions, so in either case, the branch will contain all transactions.
Even in the unlikely event that a split happened twice in a row, both sides of the
second split would contain the full set of transactions anyway.

It's not a problem if transactions have to wait one or a few extra cycles to get into
a block.

Satoshi Nakamoto

Cryptography Mailing List

Bitcoin P2P e-cash paper

39

2008-11-10 02:14:30 UTC - -

James A. Donald wrote:

> Furthermore, it cannot be made to work, as in the

> proposed system the work of tracking who owns what coins
> is paid for by seigniorage, which requires inflation.

If you're having trouble with the inflation issue, it's easy to tweak it for
transaction fees instead. It's as simple as this: let the output value from any
transaction be 1 cent less than the input value. Either the client software
automatically writes transactions for 1 cent more than the intended payment
value, or it could come out of the payee's side. The incentive value when a node
finds a proof-of-work for a block could be the total of the fees in the block.

Satoshi Nakamoto

Cryptography Mailing List
Bitcoin P2P e-cash paper
2008-11-10 22:18:20 UTC - -

James A. Donald wrote:

> So what happened to the coin that lost the race?
>

> ... it is a bit harsh if the guy who came second

> is likely to lose his coin.

When there are multiple double-spent versions of the same transaction, one and
only one will become valid.

The receiver of a payment must wait an hour or so before believing that it's valid.
The network will resolve any possible double-spend races by then.

The guy who received the double-spend that became invalid never thought he had
it in the first place. His software would have shown the transaction go from
"unconfirmed" to "invalid". If necessary, the UI can be made to hide transactions
until they're sufficiently deep in the block chain.

> Further, your description of events implies restrictions

> on timing and coin generation - that the entire network

> generates coins slowly compared to the time required for
> news of a new coin to flood the network

40

Sorry if I didn't make that clear. The target time between blocks will probably be
10 minutes.

Every block includes its creation time. If the time is off by more than 36 hours,
other nodes won't work on it. If the timespan over the last 6*24*30 blocks is less
than 15 days, blocks are being generated too fast and the proof-of-work difficulty
doubles. Everyone does the same calculation with the same chain data, so they all
get the same result at the same link in the chain.

> We want spenders to have certainty that their

> transaction is valid at the time it takes a spend to

> flood the network, not at the time it takes for branch
> races to be resolved.

Instantant non-repudiability is not a feature, but it's still much faster than existing
systems. Paper cheques can bounce up to a week or two later. Credit card
transactions can be contested up to 60 to 180 days later. Bitcoin transactions can
be sufficiently irreversible in an hour or two.

> If one node is ignoring all spends that it does not
> care about, it suffers no adverse consequences.

With the transaction fee based incentive system I recently posted, nodes would
have an incentive to include all the paying transactions they receive.

Satoshi Nakamoto

Cryptography Mailing List
Bitcoin P2P e-cash paper
2008-11-13 22:56:55 UTC - -

James A. Donald wrote:

> [t is not sufficient that everyone knows X. We also

> need everyone to know that everyone knows X, and that

> everyone knows that everyone knows that everyone knows X
> - which, as in the Byzantine Generals problem, is the

> classic hard problem of distributed data processing.

The proof-of-work chain is a solution to the Byzantine Generals' Problem. I'll try

41

to rephrase it in that context.

A number of Byzantine Generals each have a computer and want to attack the
King's wi-fi by brute forcing the password, which they've learned is a certain
number of characters in length. Once they stimulate the network to generate a
packet, they must crack the password within a limited time to break in and erase
the logs, otherwise they will be discovered and get in trouble. They only have
enough CPU power to crack it fast enough if a majority of them attack at the
same time.

They don't particularly care when the attack will be, just that they all agree. It has
been decided that anyone who feels like it will announce a time, and whatever
time is heard first will be the official attack time. The problem is that the network
is not instantaneous, and if two generals announce different attack times at close
to the same time, some may hear one first and others hear the other first.

They use a proof-of-work chain to solve the problem. Once each general receives
whatever attack time he hears first, he sets his computer to solve an extremely
difficult proof-of-work problem that includes the attack time in its hash. The
proof-of-work is so difficult, it's expected to take 10 minutes of them all working
at once before one of them finds a solution. Once one of the generals finds a
proof-of-work, he broadcasts it to the network, and everyone changes their
current proof-of-work computation to include that proof-of-work in the hash
they're working on. If anyone was working on a different attack time, they switch
to this one, because its proof-of-work chain is now longer.

After two hours, one attack time should be hashed by a chain of 12 proofs-of-
work. Every general, just by verifying the difficulty of the proof-of-work chain,
can estimate how much parallel CPU power per hour was expended on it and see
that it must have required the majority of the computers to produce that much
proof-of-work in the allotted time. They had to all have seen it because the proof-
of-work is proof that they worked on it. If the CPU power exhibited by the proof-
of-work chain is sufficient to crack the password, they can safely attack at the
agreed time.

The proof-of-work chain is how all the synchronisation, distributed database and
global view problems you've asked about are solved.

Cryptography Mailing List

Bitcoin P2P e-cash paper

42

2008-11-14 18:55:35 UTC - -

Hal Finney wrote:

> [think it is necessary that nodes keep a separate

> pending-transaction list associated with each candidate chain.
> ... One might also ask ... how many candidate chains must

> a given node keep track of at one time, on average?

Fortunately, it's only necessary to keep a pending-transaction pool for the current
best branch. When a new block arrives for the best branch, ConnectBlock
removes the block's transactions from the pending-tx pool. If a different branch
becomes longer, it calls DisconnectBlock on the main branch down to the fork,
returning the block transactions to the pending-tx pool, and calls ConnectBlock
on the new branch, sopping back up any transactions that were in both branches.
It's expected that reorgs like this would be rare and shallow.

With this optimisation, candidate branches are not really any burden. They just sit
on the disk and don't require attention unless they ever become the main chain.

> Or as James raised earlier, if the network broadcast
> is reliable but depends on a potentially slow flooding
> algorithm, how does that impact performance?

Broadcasts will probably be almost completely reliable. TCP transmissions are
rarely ever dropped these days, and the broadcast protocol has a retry mechanism
to get the data from other nodes after a while. If broadcasts turn out to be slower
in practice than expected, the target time between blocks may have to be
increased to avoid wasting resources. We want blocks to usually propagate in
much less time than it takes to generate them, otherwise nodes would spend too
much time working on obsolete blocks.

I'm planning to run an automated test with computers randomly sending
payments to each other and randomly dropping packets.

> 3. The bitcoin system turns out to be socially useful and valuable, so

> that node operators feel that they are making a beneficial contribution

> to the world by their efforts (similar to the various "@Home" compute

> projects where people volunteer their compute resources for good causes).
>

> In this case it seems to me that simple altruism can suffice to keep the

> network running properly.

It's very attractive to the libertarian viewpoint if we can explain it properly. I'm

43

better with code than with words though.

Satoshi Nakamoto

Cryptography Mailing List
Bitcoin P2P e-cash paper
2008-11-15 04:43:00 UTC - -

I'll try and hurry up and release the sourcecode as soon as possible to serve as a
reference to help clear up all these implementation questions.

Ray Dillinger (Bear) wrote:
> When a coin is spent, the buyer and seller digitally sign a (blinded)
> transaction record.

Only the buyer signs, and there's no blinding.

> If someone double spends, then the transaction record
> can be unblinded revealing the identity of the cheater.

Identities are not used, and there's no reliance on recourse. It's all prevention.

> This is done via a fairly standard cut-and-choose
> algorithm where the buyer responds to several challenges
> with secret shares

No challenges or secret shares. A basic transaction is just what you see in the
figure in section 2. A signature (of the buyer) satisfying the public key of the
previous transaction, and a new public key (of the seller) that must be satisfied to
spend it the next time.

> They may also receive chains as long as the one they're trying to

> extend while they work, in which the last few "links" are links

> that are *not* in common with the chain on which they're working.
> These they ignore.

Right, if it's equal in length, ties are broken by keeping the earliest one received.

44

> If it contains a double spend, then they create a "transaction"
> which is a proof of double spending, add it to their pool A,
> broadcast it, and continue work.

There's no need for reporting of "proof of double spending" like that. If the same
chain contains both spends, then the block is invalid and rejected.

Same if a block didn't have enough proof-of-work. That block is invalid and
rejected. There's no need to circulate a report about it. Every node could see that
and reject it before relaying it.

If there are two competing chains, each containing a different version of the same
transaction, with one trying to give money to one person and the other trying to
give the same money to someone else, resolving which of the spends is valid is
what the whole proof-of-work chain is about.

We're not "on the lookout" for double spends to sound the alarm and catch the
cheater. We merely adjudicate which one of the spends is valid. Receivers of
transactions must wait a few blocks to make sure that resolution has had time to
complete. Would be cheaters can try and simultaneously double-spend all they
want, and all they accomplish is that within a few blocks, one of the spends
becomes valid and the others become invalid. Any later double-spends are
immediately rejected once there's already a spend in the main chain.

Even if an earlier spend wasn't in the chain yet, if it was already in all the nodes'
pools, then the second spend would be turned away by all those nodes that
already have the first spend.

> If the new chain is accepted, then they give up on adding their

> current link, dump all the transactions from pool L back into pool
> A (along with transactions they've received or created since

> starting work), eliminate from pool A those transaction records

> which are already part of a link in the new chain, and start work
> again trying to extend the new chain.

Right. They also refresh whenever a new transaction comes in, so L pretty much
contains everything in A all the time.
> CPU-intensive digital signature algorithm to

> sign the chain including the new block L.

It's a Hashcash style SHA-256 proof-of-work (partial pre-image of zero), not a

45

signature.

> Is there a mechanism to make sure that the "chain" does not consist
> solely of links added by just the 3 or 4 fastest nodes? 'Cause a

> broadcast transaction record could easily miss those 3 or 4 nodes
> and if it does, and those nodes continue to dominate the chain, the
> transaction might never get added.

If you're thinking of it as a CPU-intensive digital signing, then you may be
thinking of a race to finish a long operation first and the fastest always winning.

The proof-of-work is a Hashcash style SHA-256 collision finding. It's a
memoryless process where you do millions of hashes a second, with a small
chance of finding one each time. The 3 or 4 fastest nodes' dominance would only
be proportional to their share of the total CPU power. Anyone's chance of finding
a solution at any time is proportional to their CPU power.

There will be transaction fees, so nodes will have an incentive to receive and
include all the transactions they can. Nodes will eventually be compensated by
transaction fees alone when the total coins created hits the pre-determined
ceiling.

> Also, the work requirement for adding a link to the chain should
> vary (again exponentially) with the number of links added to that
> chain in the previous week, causing the rate of coin generation

> (and therefore inflation) to be strictly controlled.

Right.

> You need coin aggregation for this to scale. There needs to be

> a "provable" transaction where someone retires ten single coins

> and creates a new coin with denomination ten, etc.

Every transaction is one of these. Section 9, Combining and Splitting Value.

Satoshi Nakamoto

Cryptography Mailing List

46

Bitcoin P2P e-cash paper
2008-11-15 18:02:00 UTC - -

Ray Dillinger wrote:

> One way to do this would be

> to have the person recieving the coin generate an asymmetric
> key pair, and then have half of it published with the

> transaction. In order to spend the coin later, s/he must

> demonstrate posession of the other half of the asymmetric

> key pair, probably by using it to sign the key provided by

> the new seller.

Right, it's ECC digital signatures. A new key pair is used for every
transaction.

It's not pseudonymous in the sense of nyms identifying people, but it
is at least a little pseudonymous in that the next action on a coin
can be identified as being from the owner of that coin.

> Mmmm. I don't know if I'm comfortable with that. You're saying
> there's no effort to identify and exclude nodes that don't

> cooperate? I suspect this will lead to trouble and possible DOS
> attacks.

There is no reliance on identifying anyone. As you've said, it's
futile and can be trivially defeated with sock puppets.

The credential that establishes someone as real is the ability to
supply CPU power.

> Until.... until what? How does anybody know when a transaction

> has become irrevocable? Is "a few" blocks three? Thirty? A

> hundred? Does it depend on the number of nodes? Is it logarithmic
> or linear in number of nodes?

Section 11 calculates the worst case under attack. Typically, 5 or
10 blocks is enough for that. If you're selling something that
doesn't merit a network-scale attack to steal it, in practice you
could cut it closer.

> But in the absence of identity, there's no downside to them

47

> if spends become invalid, if they've already received the

> goods they double-spent for (access to website, download,

> whatever). The merchants are left holding the bag with

> "invalid" coins, unless they wait that magical "few blocks"

> (and how can they know how many?) before treating the spender
> as having paid.

>

> The consumers won't do this if they spend their coin and it takes
> an hour to clear before they can do what they spent their coin on.
> The merchants won't do it if there's no way to charge back a

> customer when they find the that their coin is invalid because

> the customer has doublespent.

This is a version 2 problem that I believe can be solved fairly
satisfactorily for most applications.

The race is to spread your transaction on the network first. Think 6
degrees of freedom -- it spreads exponentially. It would only take
something like 2 minutes for a transaction to spread widely enough
that a competitor starting late would have little chance of grabbing
very many nodes before the first one is overtaking the whole network.
During those 2 minutes, the merchant's nodes can be watching for a
double-spent transaction. The double-spender would not be able to
blast his alternate transaction out to the world without the merchant
getting it, so he has to wait before starting.

If the real transaction reaches 90% and the double-spent tx reaches

10%, the double-spender only gets a 10% chance of not paying, and 90%
chance his money gets spent. For almost any type of goods, that's

not going